Screening

Part Two: Validity of screening test

Learning objectives

At the end of this lecture, students will be able to:

- 1. describe elements of screening tests
- 2. calculate sensitivity and specificity
- 3. explain the implications of false positives and false negatives
- 4. understand and calculate predictive values

What is validity?

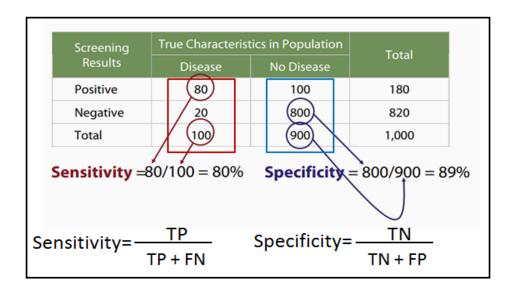
- The term validity refers to what extent the test accurately measures what it is supposed to measure.
- In other words, validity expresses the ability of a test to separate or distinguish those who have the disease form those who do not have it.
- Validity has two components: sensitivity and specificity
 - **1. Sensitivity** is the ability of a screening procedure to <u>identify</u> correctly those who have the disease.

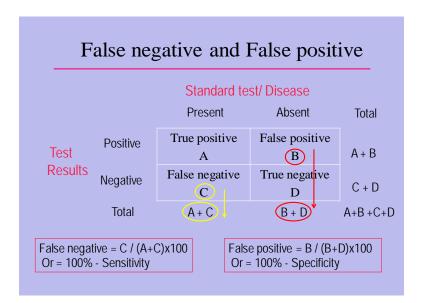
The proportion of persons <u>with</u> the disease who have a <u>positive</u> test result is "True <u>positive</u>"

It is 100% sensitive if it is positive in every case.

<u>Cases</u> which are missed are called "<u>False negative</u>".

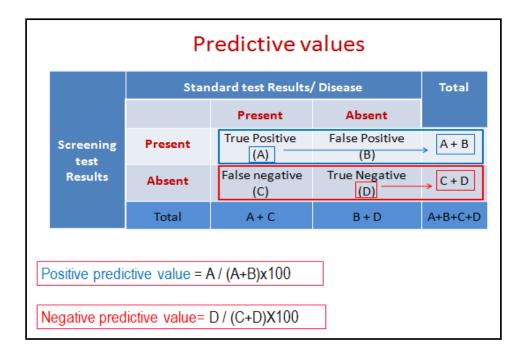
2. Specificity is the ability of a screening procedure to <u>identify</u> correctly those who do not have the disease.

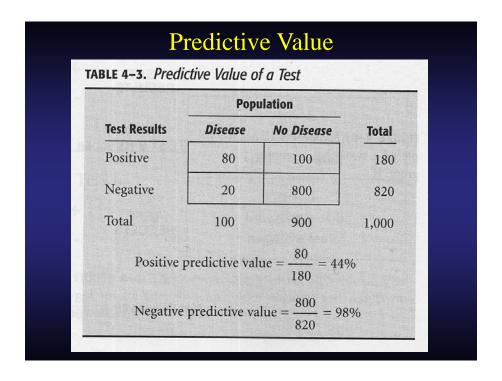

The proportion of persons without the disease who have a <u>negative</u> test result "is <u>True negative</u>".


<u>Non-diseased</u> individuals who are tested positive are called "False <u>positive</u>".

	Standard test Results/ Disease			Total	
		Present	Absent		
Screening test	Present	True Positive (A)	False Positive (B)	A + B	
Results	Absent	False negative (C)	True Negative (D)	C + D	
	Total	A + C	B + D	A+B+C+D	

Measures of the Validity of Screening Tests


1. Sensitivity & specificity



2. Predictive values

- **Positive Predictive value**: The proportion (percentage) of <u>true diseased (positive)</u> individuals that is correctly identified by the screening test out of the total positives by the screening test (TP/TP+FP x100).
- **Negative Predictive value**: The proportion (percentage) of <u>true negative</u> people that is correctly detected by the screening test out of the total negatives by the screening test (TN/TN+FN x100).

Sensitivity= 80/100 x100= 80%

Specificity= 800/900 x100= 88.9%

Overall agreement (accuracy) rate= 80+800/1000 x100= 88%

Misclassification rate= 100+20/1000 x100= 12%

PR $_{(True)}$ = 100/1000 x1000= 100/1000 pop.

PR $_{\text{(Test)}}$ = 180/1000 x1000= 180/1000 pop.

Other Measures from the 2 x 2 Table

- Accuracy of a screening test (Agreement rate): determined by the formula: (a+d)/(a+b+c+d) x 100.
- Prevalence (Prevalence True): determined by the formula: (a+c)/(a+b+c+d) x1000
- Prevalence according to the screening results: (a+b)/(a+b+c+d) x1000

Highly sensitive test

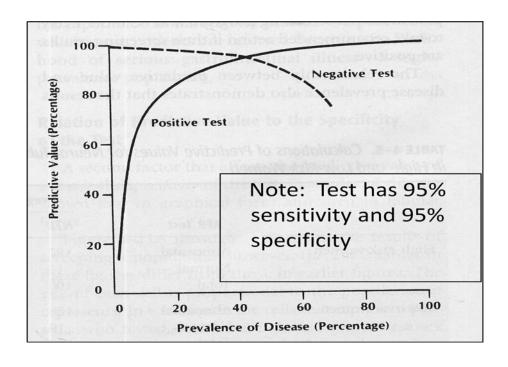
- Highly sensitive test is needed in screening for a rare and fatal disease, because we don't want to miss any case of the disease.
- e.g. in myocardial infarction and cancer we need a highly sensitive screening test.

Implications or significance of high false negative rate

- 1. Severe cases of the disease will be deprived from appropriate treatment. This will lead to more complications and death.
- 2. False reassurance of patients. This disagrees with characteristics of the screening test, which should diagnose the disease at early stage.

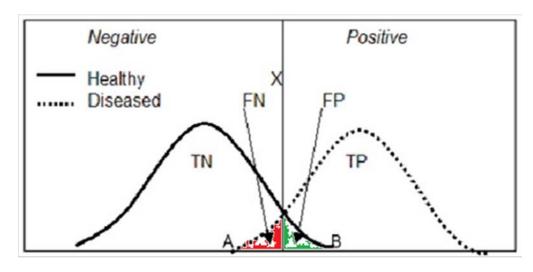
Highly specific test

- A highly specific test is required for screening of a fairly common and non fatal disease, because we don't want high false positive rate to avoid excessive over-diagnosis and its consequences (treatment, side effects of drugs)
- e.g. in Diabetes mellitus, we need a highly specific screening test.


Implications or significance of high false positive rate

- 1. Treatment may be given to non-diseased persons with its sequences:
 - a. Side effects of drugs
 - b. High cost of drugs
- 2. The test may be harmful and invasive
- 3. Psychologically harmful to healthy person

Effects of Disease Prevalence on the Predictive Value of a Screening Test


• When the prevalence of a disease increases, the positive predictive value rises, and the negative predictive value falls.

with Constant Sensitivity and Specificity					
Prevalence	PV+(%)	Sensitivity	Specificity		
(%)		(%)	(%)		
0.1	1.8	90	95		
1.0	15.4	90	95		
5.0	48.6	90	95		
50.0	94.7	90	95		



Relationship between Sensitivity and Specificity

- The sensitivity and specificity are generally constant and don't change with change of prevalence of the disease, but they change in relation to each other if the cut-off point of reading is changed
- To improve sensitivity, the cut-off point used to classify individuals as diseased should be moved farther in the range of the non-diseased (normal).
- To improve specificity, the cut-off point should be moved farther in the range typically associated with the disease.

X= Cut-off value

